#### DATA ANALYSIS AND RESULTS

Following the data collection phase, each type of data underwent a coding process in preparation for statistical analysis. Initially, the data were inputted into MS-Excel and subsequently transferred to SPSS for in-depth examination. This chapter relies on the outcomes derived from this data, which have been carefully reviewed, for discussion and comprehension. Leveraging SPSS, the PROCESS Macro, and AMOS statistical tools, we conducted a comprehensive data analysis encompassing various techniques such as data tabulation, graphical representations, mean and median calculations, correlation assessments, hypothesis testing, and model fit evaluations. To validate our measurement model, Confirmatory Factor Analysis was employed. The chapter culminates with the presentation of a structural equation model and the utilization of the PROCESS Macro to illustrate the relationships and mediation effects among the latent constructs under investigation in our study.

#### **Response Rate**

The study encompassed a sample of 405 employees working in banks and post offices located in the Tricity and its adjacent regions. In the data collection phase, we distributed approximately 1160 questionnaires, resulting in the receipt of 438 fully completed questionnaires. The non-response rate, comprising respondents who either declined participation due to time constraints or submitted duplicate responses to the same question, stood at 34.91%. This response rate is noteworthy, signifying a significant level of participation and engagement from the study's participants.

#### **Data Screening**

In our dataset, we encountered 33 incomplete questionnaires, necessitating the use of data imputation techniques to address the missing values effectively. An examination of the standard deviation of responses indicated that there were no instances of unengaged or indifferent responses, ensuring the completeness of the data. Additionally, it's noteworthy that there were no extreme outliers identified during the course of this study. This meticulous data collection process was conducted personally by the researcher at each data collection point and sample, contributing to the data's reliability and accuracy.

Furthermore, it's important to highlight that all the indicators exhibited reasonably normal distributions in terms of skewness and kurtosis, which is particularly notable given the substantial size of our sample (as per Rose et al., 2015). This normality in the distribution of indicators enhances the robustness of our data analysis and supports the validity of the statistical techniques employed in our research.

| Demographic Profile N=405 | Frequency | Percentage |
|---------------------------|-----------|------------|
| Gender                    |           |            |
| Male                      | 239       | 59.01      |
| Female                    | 166       | 40.99      |
| Age                       |           |            |
| 16-25                     | 119       | 29.38      |
| 26-35                     | 158       | 39.01      |
| 36-45                     | 112       | 27.65      |
| More than 45              | 16        | 3.95       |

Table 1. The table summarizes the respondent demographics

#### **Educational Background**

| Bachelors                      | 182 | 44.94 |
|--------------------------------|-----|-------|
| Master & Above                 | 223 | 55.06 |
| Length of service              |     |       |
| < 10 years                     | 196 | 48.4  |
| 10 – 20 years                  | 116 | 28.64 |
| More than 20 years             | 93  | 22.96 |
| Indicate your Current Position |     |       |
| Cashier                        | 92  | 22.72 |
| General banking officer        | 143 | 35.31 |
| Operation Manager              | 92  | 22.72 |
| Branch Manager                 | 78  | 19.26 |
| Type of Ownership              |     |       |
| Government owned Institutions  | 165 | 40.74 |
| Private Institutions           | 240 | 59.26 |
| Type of institution            |     |       |
| Banks                          | 256 | 63.21 |
| Post Offices                   | 149 | 36.79 |

### Source: Author's Compilations

In this study, we examined the demographic profile of a sample population consisting of 405 employees from the post office/ banking sector within North India. Our analysis of the gender distribution revealed that the majority of the sample is male, comprising 59.01% of the total, while females constitute 40.99%. Regarding age, the highest proportion falls within the age group of 26-35, accounting for 39.01%, closely followed by the 16-25 age group at 29.38%. In terms of educational background, a significant 55.06% of the participants hold master's

degrees or higher qualifications, while 44.94% possess bachelor's degrees. Exploring the length of service, the majority of respondents (48.40%) have less than 10 years of experience in the banking sector. When assessing current positions, general banking officers dominate the sample at 35.31%, followed by cashiers (22.72%), operation managers (22.72%), and branch managers (19.26%). Under the type of ownership the Government-owned institutions comprise 165 (40.74%) of the total, while private institutions constitute the remaining 240 (59.26%). Lastly, in the "Type of Institution" category, banks dominate with 256 (63.21%) institutions, and post offices account for the remaining 149 (36.79%).

### **Descriptive Statistics**

The outcomes presented in Table 2 provide a detailed descriptive analysis of the collected data. This analysis includes key statistical measures such as the Mean, Skewness, Standard Deviation, and Kurtosis, which collectively contribute to a more comprehensive understanding of the dataset.

|      |           |           |           | Std.      |           |            |           |            |
|------|-----------|-----------|-----------|-----------|-----------|------------|-----------|------------|
|      | Ν         | Sum       | Mean      | Deviation | Ske       | wness      | Kur       | rtosis     |
|      | Statistic | Statistic | Statistic | Statistic | Statistic | Std. Error | Statistic | Std. Error |
| SOO1 | 405       | 1733      | 4.28      | .628      | 294       | .121       | 656       | .242       |
| SOO2 | 405       | 1737      | 4.29      | .643      | 352       | .121       | 705       | .242       |
| SOO3 | 405       | 1750      | 4.32      | .642      | 410       | .121       | 697       | .242       |
| SOO4 | 405       | 1749      | 4.32      | .629      | 369       | .121       | 673       | .242       |
| SOO5 | 405       | 1744      | 4.31      | .637      | 368       | .121       | 690       | .242       |
| ENO1 | 405       | 1761      | 4.35      | .613      | 375       | .121       | 660       | .242       |

Table 2: Descriptive statistics of the constructs

| ENO2 | 405 | 1755 | 4.33 | .617 | 359 | .121 | 659 | .242 |
|------|-----|------|------|------|-----|------|-----|------|
| ENO3 | 405 | 1759 | 4.34 | .608 | 344 | .121 | 658 | .242 |
| ENO4 | 405 | 1752 | 4.33 | .619 | 351 | .121 | 660 | .242 |
| ENO5 | 405 | 1751 | 4.32 | .619 | 344 | .121 | 658 | .242 |
| ENO6 | 405 | 1756 | 4.34 | .614 | 352 | .121 | 657 | .242 |
| ECO1 | 405 | 1713 | 4.23 | .605 | 153 | .121 | 508 | .242 |
| ECO2 | 405 | 1729 | 4.27 | .605 | 204 | .121 | 574 | .242 |
| ECO3 | 405 | 1697 | 4.19 | .577 | 031 | .121 | 270 | .242 |
| SCA1 | 405 | 1706 | 4.21 | .592 | 098 | .121 | 415 | .242 |
| SCA2 | 405 | 1704 | 4.21 | .586 | 072 | .121 | 368 | .242 |
| SCA3 | 405 | 1706 | 4.21 | .596 | 111 | .121 | 436 | .242 |
| SCA4 | 405 | 1702 | 4.20 | .600 | 111 | .121 | 435 | .242 |
| SCA5 | 405 | 1713 | 4.23 | .625 | 209 | .121 | 600 | .242 |
| SCA6 | 405 | 1709 | 4.22 | .608 | 153 | .121 | 509 | .242 |
| MTO1 | 405 | 1729 | 4.27 | .584 | 126 | .121 | 516 | .242 |
| MTO2 | 405 | 1731 | 4.27 | .598 | 188 | .121 | 564 | .242 |
| MTO3 | 405 | 1737 | 4.29 | .587 | 165 | .121 | 568 | .242 |
| MTO4 | 405 | 1747 | 4.31 | .608 | 286 | .121 | 637 | .242 |
| MTO5 | 405 | 1745 | 4.31 | .585 | 187 | .121 | 608 | .242 |
| MTO6 | 405 | 1738 | 4.29 | .584 | 154 | .121 | 569 | .242 |
| SPF1 | 405 | 1769 | 4.37 | .634 | 491 | .121 | 658 | .242 |
| SPF2 | 405 | 1769 | 4.37 | .626 | 465 | .121 | 655 | .242 |
| SPF3 | 405 | 1758 | 4.34 | .651 | 477 | .121 | 702 | .242 |
| SPF4 | 405 | 1763 | 4.35 | .646 | 492 | .121 | 684 | .242 |
| SPF5 | 405 | 1766 | 4.36 | .628 | 455 | .121 | 661 | .242 |
|      |     |      |      |      |     |      |     |      |

Source: Author's Calculations

# **Reliability Testing**

# Table 3 Reliability statistics for "Societal orientation"

|                  | Cronbach's Alpha Based on |            |
|------------------|---------------------------|------------|
| Cronbach's Alpha | Standardized Items        | N of Items |
| .892             | .892                      | 5          |
|                  |                           |            |

**Source:** Author's Calculations

### Table 3.1 Item Statistics

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| SOO1 | 4.28 | .628           | 405 |
| SOO2 | 4.29 | .643           | 405 |
| SOO3 | 4.32 | .642           | 405 |
| SOO4 | 4.32 | .629           | 405 |
| SOO5 | 4.31 | .637           | 405 |

Source: Author's Calculations

Table 3.2 Item-Total Statistics

|      |               | Scale        | Corrected   | Squared     | Cronbach's    |
|------|---------------|--------------|-------------|-------------|---------------|
|      | Scale Mean if | Variance if  | Item-Total  | Multiple    | Alpha if Item |
|      | Item Deleted  | Item Deleted | Correlation | Correlation | Deleted       |
| SOO1 | 17.23         | 4.848        | .656        | .442        | .886          |
| SOO2 | 17.22         | 4.615        | .734        | .541        | .869          |

| SOO3 | 17.19 | 4.631 | .730 | .550 | .870 |
|------|-------|-------|------|------|------|
| SOO4 | 17.20 | 4.553 | .785 | .636 | .857 |
| SOO5 | 17.21 | 4.546 | .775 | .622 | .859 |

Source: Author's Calculations

The reliability assessment of the "Societal Orientation" factor yielded a commendable score of 0.892, surpassing the widely accepted threshold of 0.7, as specified by Hair et al. (1998). Table 3, Table 3.1 and Table 3.2 provides a comprehensive overview of the reliability analysis conducted on the "Societal Orientation" factor, comprising five variables. The meticulous examination of item-level reliability within the table indicates that each individual item consistently met or exceeded the established reliability standards.

|                  | Cronbach's Alpha Based on |            |   |
|------------------|---------------------------|------------|---|
| Cronbach's Alpha | Standardized Items        | N of Items |   |
| .970             | .970                      |            | 6 |

| Table 4.1 Item Statistics |
|---------------------------|
|---------------------------|

|      | Mean | Std. Deviation | Ν   |
|------|------|----------------|-----|
| ENO1 | 4.35 | .613           | 405 |
| ENO2 | 4.33 | .617           | 405 |
| ENO3 | 4.34 | .608           | 405 |
| ENO4 | 4.33 | .619           | 405 |
| ENO5 | 4.32 | .619           | 405 |

| ENO6 | 4.34 | .614 | 405 |
|------|------|------|-----|
|      |      |      |     |

#### Table 4.2 Item-Total Statistics

|      |               | Scale        | Corrected   | Squared     | Cronbach's    |
|------|---------------|--------------|-------------|-------------|---------------|
|      | Scale Mean if | Variance if  | Item-Total  | Multiple    | Alpha if Item |
|      | Item Deleted  | Item Deleted | Correlation | Correlation | Deleted       |
| ENO1 | 21.66         | 8.318        | .890        | .919        | .965          |
| ENO2 | 21.68         | 8.244        | .907        | .937        | .964          |
| ENO3 | 21.67         | 8.332        | .895        | .810        | .965          |
| ENO4 | 21.68         | 8.187        | .923        | .924        | .962          |
| ENO5 | 21.69         | 8.166        | .931        | .939        | .961          |
| ENO6 | 21.67         | 8.389        | .865        | .778        | .968          |

The factor "Environmental orientation" exhibited a remarkable reliability score of 0.970, comfortably meeting the established standard of exceeding 0.7, as recommended by Hair et al. (1998). Tables 4, 4.2, and 4.3 comprehensively illustrate the reliability analysis conducted on the "Environmental orientation" factor, comprising six variables. A meticulous examination of item-level reliability, as presented in the tables, consistently demonstrates that each individual item met or exceeded the prescribed reliability standards.

Table 5 Reliability statistics for "Economic orientation"

|                  | Cronbach's Alpha Based on |            |   |
|------------------|---------------------------|------------|---|
| Cronbach's Alpha | Standardized Items        | N of Items |   |
| .912             | .912                      |            | 3 |

 Mean
 Std. Deviation
 N

 ECO1
 4.23
 .605

 ECO2
 4.27
 .605

 ECO3
 4.19
 .577

Table 5.1 Item Statistics

Table 5.2 Item-Total Statistics

|      |               | Scale        | Corrected   | Squared     | Cronbach's    |
|------|---------------|--------------|-------------|-------------|---------------|
|      | Scale Mean if | Variance if  | Item-Total  | Multiple    | Alpha if Item |
|      | Item Deleted  | Item Deleted | Correlation | Correlation | Deleted       |
| ECO1 | 8.46          | 1.264        | .799        | .653        | .895          |
| ECO2 | 8.42          | 1.200        | .868        | .754        | .836          |
| ECO3 | 8.50          | 1.315        | .807        | .672        | .888          |

The factor "Economic orientation" demonstrated a commendable reliability coefficient of .912, aligning with the recommended standard of surpassing 0.7, as outlined by Hair et al. in 1998. Tables 5, 5.1, and 5.3 provide a comprehensive presentation of the reliability analysis conducted for the "Economic orientation" factor, comprising three variables. A meticulous examination of item-wise reliability, as depicted in the tables, consistently affirms that each individual item's reliability measurements met or exceeded the established standards.

Table 6 Reliability statistics for "Sustainable Competitive Advantage"

|                  | Cronbach's Alpha Based on |            |
|------------------|---------------------------|------------|
| Cronbach's Alpha | Standardized Items        | N of Items |

405

405

405

| .925 | .925 | 6 |
|------|------|---|
|      |      |   |

### Table 6.1 Item Statistics

|      | Mean | Std. Deviation | Ν   |
|------|------|----------------|-----|
| SCA1 | 4.21 | .592           | 405 |
| SCA2 | 4.21 | .586           | 405 |
| SCA3 | 4.21 | .596           | 405 |
| SCA4 | 4.20 | .600           | 405 |
| SCA5 | 4.23 | .625           | 405 |
| SCA6 | 4.22 | .608           | 405 |

## Table 6.2 Item-Total Statistics

|      |               | Scale        | Corrected   | Squared     | Cronbach's    |
|------|---------------|--------------|-------------|-------------|---------------|
|      | Scale Mean if | Variance if  | Item-Total  | Multiple    | Alpha if Item |
|      | Item Deleted  | Item Deleted | Correlation | Correlation | Deleted       |
| SCA1 | 21.07         | 6.557        | .839        | .803        | .903          |
| SCA2 | 21.08         | 6.536        | .859        | .812        | .901          |
| SCA3 | 21.07         | 6.661        | .791        | .711        | .910          |
| SCA4 | 21.08         | 6.674        | .780        | .662        | .911          |
| SCA5 | 21.05         | 6.754        | .710        | .727        | .921          |
| SCA6 | 21.06         | 6.793        | .722        | .729        | .919          |

The factor of "Sustainable Competitive Advantage" exhibited a robust reliability coefficient of .925, aligning with the recommended standard of exceeding 0.7, as prescribed by Hair et al. (1998). Tables 6, 6.1, and 6.3 provide an exhaustive presentation of the reliability analysis

conducted for the "Sustainable Competitive Advantage" factor, comprising six variables. A thorough examination of item-level reliability, as delineated in the tables, consistently confirms that each individual item's reliability measurements met or exceeded the established standards.

|                  | Cronbach's Alpha Based on |            |   |
|------------------|---------------------------|------------|---|
| Cronbach's Alpha | Standardized Items        | N of Items |   |
| .944             | .944                      |            | 6 |

## Table 7.1 Item Statistics

|      | Mean | Std. Deviation | Ν   |
|------|------|----------------|-----|
| MTO1 | 4.27 | .584           | 405 |
| MTO2 | 4.27 | .598           | 405 |
| MTO3 | 4.29 | .587           | 405 |
| MTO4 | 4.31 | .608           | 405 |
| MTO5 | 4.31 | .585           | 405 |
| MTO6 | 4.29 | .584           | 405 |

### Table 7.2 Item-Total Statistics

|      |               | Scale        | Corrected   | Squared     | Cronbach's    |
|------|---------------|--------------|-------------|-------------|---------------|
|      | Scale Mean if | Variance if  | Item-Total  | Multiple    | Alpha if Item |
|      | Item Deleted  | Item Deleted | Correlation | Correlation | Deleted       |
| MTO1 | 21.48         | 6.834        | .868        | .771        | .929          |

| MTO2 | 21.47 | 6.893 | .819 | .701 | .935 |
|------|-------|-------|------|------|------|
| MTO3 | 21.46 | 6.972 | .809 | .675 | .936 |
| MTO4 | 21.43 | 6.919 | .793 | .640 | .938 |
| MTO5 | 21.44 | 6.875 | .849 | .790 | .931 |
| MTO6 | 21.45 | 6.897 | .844 | .791 | .932 |

The reliability of the factor "Market orientation" was found to be .944 which is as per the standard of more than 0.7 (Hair et al., 1998). Table 7, 7.1 and 7.2 shows the reliability analysis of the factor "Market orientation" which consists of 6 variables and the item wise reliability was measured and as per the table each item when measured was found to be as per standards.

| Table 8 Reliability | statistics | for "Sustainability | Performance" |
|---------------------|------------|---------------------|--------------|
|---------------------|------------|---------------------|--------------|

|                  | Cronbach's Alpha Based on |            |
|------------------|---------------------------|------------|
| Cronbach's Alpha | Standardized Items        | N of Items |
| .891             | .891                      | 5          |

| Table 8.1 Item Statistics |
|---------------------------|
|---------------------------|

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| SPF1 | 4.37 | .634           | 405 |
| SPF2 | 4.37 | .626           | 405 |
| SPF3 | 4.34 | .651           | 405 |
| SPF4 | 4.35 | .646           | 405 |
| SPF5 | 4.36 | .628           | 405 |

Table 8.2 Item-Total Statistics

|      |               | Scale        | Corrected   | Squared     | Cronbach's    |
|------|---------------|--------------|-------------|-------------|---------------|
|      | Scale Mean if | Variance if  | Item-Total  | Multiple    | Alpha if Item |
|      | Item Deleted  | Item Deleted | Correlation | Correlation | Deleted       |
| SPF1 | 17.42         | 4.814        | .666        | .488        | .883          |
| SPF2 | 17.42         | 4.819        | .676        | .496        | .881          |
| SPF3 | 17.45         | 4.600        | .733        | .547        | .868          |
| SPF4 | 17.44         | 4.479        | .794        | .915        | .854          |
| SPF5 | 17.43         | 4.518        | .807        | .916        | .851          |

The reliability of the factor "Sustainability Performance" was found to be .891 which is as per the standard of more than 0.7 (Hair et al., 1998). Table 8, 8.1, 8.2 shows the reliability analysis of the factor "Sustainability Performance" which consists of 5 variables and the item wise reliability was measured and as per the table each item when measured was found to be as per standards.

#### Quality checks of data

Before the data was run for Confirmatory analysis biases the data was checked they are as follows.

*Common Method bias* (*CMB*) – An exploratory factor analysis (EFA) was conducted without any rotation, utilizing all the statements to produce a single factor. If this single factor were to account for 50% or more of the variance, it would raise concerns about Common Method Bias (CMB) within the study. However, the findings from the current study indicate that the single factor generated accounts for only 34.447% of the variance, falling

below the 50% threshold. Consequently, there is no evidence of Common Method Bias in the study, as confirmed by the results presented in Table 9.

|         |        |                |            | Extrac | ction Sums of | Squared    |
|---------|--------|----------------|------------|--------|---------------|------------|
|         | ]      | Initial Eigenv | alues      |        | Loadings      |            |
| Compone |        | % of           | Cumulative |        | % of          | Cumulative |
| nt      | Total  | Variance       | %          | Total  | Variance      | %          |
| 1       | 10.678 | 34.447         | 34.447     | 10.678 | 34.447        | 34.447     |
| 2       | 4.940  | 15.937         | 50.384     |        |               |            |
| 3       | 3.105  | 10.016         | 60.399     |        |               |            |
| 4       | 2.084  | 6.723          | 67.122     |        |               |            |
| 5       | 1.996  | 6.438          | 73.560     |        |               |            |
| 6       | 1.369  | 4.415          | 77.975     |        |               |            |
| 7       | .783   | 2.526          | 80.502     |        |               |            |
| 8       | .636   | 2.053          | 82.555     |        |               |            |
| 9       | .598   | 1.929          | 84.483     |        |               |            |
| 10      | .466   | 1.503          | 85.986     |        |               |            |
| 11      | .443   | 1.429          | 87.415     |        |               |            |
| 12      | .412   | 1.328          | 88.743     |        |               |            |
| 13      | .363   | 1.170          | 89.913     |        |               |            |
| 14      | .328   | 1.057          | 90.970     |        |               |            |
| 15      | .298   | .962           | 91.931     |        |               |            |
| 16      | .289   | .932           | 92.863     |        |               |            |
| 17      | .259   | .835           | 93.698     |        |               |            |
|         |        |                |            |        |               |            |

# Table 9. Total Variance Explained

| 18 $.249$ $.802$ $94.500$ $19$ $.242$ $.782$ $95.282$ $20$ $.225$ $.724$ $96.006$ $21$ $.206$ $.664$ $96.670$ $22$ $.172$ $.556$ $97.226$ $23$ $.155$ $.500$ $97.727$ $24$ $.135$ $.435$ $98.161$ $25$ $.132$ $.425$ $98.587$ $26$ $.108$ $.347$ $98.934$ $27$ $.103$ $.332$ $99.266$ $28$ $.085$ $.274$ $99.540$ $29$ $.081$ $.260$ $99.800$ $30$ $.041$ $.133$ $99.934$ $31$ $.021$ $.066$ $100.000$ |    |      |      |         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|------|---------|------|
| 20.225.72496.00621.206.66496.67022.172.55697.22623.155.50097.72724.135.43598.16125.132.42598.58726.108.34798.93427.103.33299.26628.085.27499.54029.081.26099.80030.041.13399.934                                                                                                                                                                                                                       | 18 | .249 | .802 | 94.500  | <br> |
| 21 $.206$ $.664$ $96.670$ $22$ $.172$ $.556$ $97.226$ $23$ $.155$ $.500$ $97.727$ $24$ $.135$ $.435$ $98.161$ $25$ $.132$ $.425$ $98.587$ $26$ $.108$ $.347$ $98.934$ $27$ $.103$ $.332$ $99.266$ $28$ $.085$ $.274$ $99.540$ $29$ $.081$ $.260$ $99.800$ $30$ $.041$ $.133$ $99.934$                                                                                                                  | 19 | .242 | .782 | 95.282  |      |
| 22.172.55697.226 $23$ .155.50097.727 $24$ .135.43598.161 $25$ .132.42598.587 $26$ .108.34798.934 $27$ .103.33299.266 $28$ .085.27499.540 $29$ .081.26099.800 $30$ .041.13399.934                                                                                                                                                                                                                       | 20 | .225 | .724 | 96.006  |      |
| 23.155.50097.727 $24$ .135.43598.161 $25$ .132.42598.587 $26$ .108.34798.934 $27$ .103.33299.266 $28$ .085.27499.540 $29$ .081.26099.800 $30$ .041.13399.934                                                                                                                                                                                                                                           | 21 | .206 | .664 | 96.670  |      |
| 24.135.43598.161 $25$ .132.42598.587 $26$ .108.34798.934 $27$ .103.33299.266 $28$ .085.27499.540 $29$ .081.26099.800 $30$ .041.13399.934                                                                                                                                                                                                                                                               | 22 | .172 | .556 | 97.226  |      |
| 25 $.132$ $.425$ $98.587$ $26$ $.108$ $.347$ $98.934$ $27$ $.103$ $.332$ $99.266$ $28$ $.085$ $.274$ $99.540$ $29$ $.081$ $.260$ $99.800$ $30$ $.041$ $.133$ $99.934$                                                                                                                                                                                                                                  | 23 | .155 | .500 | 97.727  |      |
| 26.108.34798.93427.103.33299.26628.085.27499.54029.081.26099.80030.041.13399.934                                                                                                                                                                                                                                                                                                                       | 24 | .135 | .435 | 98.161  |      |
| 27.103.33299.26628.085.27499.54029.081.26099.80030.041.13399.934                                                                                                                                                                                                                                                                                                                                       | 25 | .132 | .425 | 98.587  |      |
| 28.085.27499.54029.081.26099.80030.041.13399.934                                                                                                                                                                                                                                                                                                                                                       | 26 | .108 | .347 | 98.934  |      |
| 29.081.26099.80030.041.13399.934                                                                                                                                                                                                                                                                                                                                                                       | 27 | .103 | .332 | 99.266  |      |
| 30 .041 .133 99.934                                                                                                                                                                                                                                                                                                                                                                                    | 28 | .085 | .274 | 99.540  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                        | 29 | .081 | .260 | 99.800  |      |
| 31 .021 .066 100.000                                                                                                                                                                                                                                                                                                                                                                                   | 30 | .041 | .133 | 99.934  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                        | 31 | .021 | .066 | 100.000 |      |

Extraction Method: Principal Component Analysis.

*Non-Response bias-* We assessed this using an independent sample t-test. The results of the t-test indicate that there is no statistically significant difference in the mean values between two groups: the early respondents (ER) and the late respondents (LR), across various factors. This finding strongly suggests that there is no presence of non-response bias in the study, as corroborated by the data presented in Table 10.

| Constructs | Non-Response | Paired Differences |      |      | Sig. |
|------------|--------------|--------------------|------|------|------|
|            |              | Mean               | Std. | Std. | (2-  |

|               |         |              | -     | Deviation | Error | tailed) |
|---------------|---------|--------------|-------|-----------|-------|---------|
|               |         |              |       |           | Mean  |         |
|               | Pair 1  | SOO1 - SOO1L | -0.1  | 0.84      | 0.12  | 0.06    |
| Societal      | Pair 2  | SOO2 - SOO2L | -0.4  | 0.83      | 0.12  | 0.64    |
| orientation   | Pair 3  | SOO3 - SOO3L | -0.28 | 0.83      | 0.12  | 0.36    |
| orientation   | Pair 4  | SOO4 - SOO4L | -0.24 | 0.77      | 0.11  | 0.25    |
|               | Pair 5  | SOO5 - SOO5L | -0.26 | 0.83      | 0.12  | 0.74    |
|               | Pair 6  | ENO1 - ENO1L | -0.26 | 0.75      | 0.11  | 0.07    |
|               | Pair 7  | ENO2 - ENO2L | -0.2  | 0.88      | 0.12  | 0.64    |
| Environmental | Pair 8  | ENO3 - ENO3L | -0.16 | 0.82      | 0.12  | 0.31    |
| orientation   | Pair 9  | ENO4 - ENO4L | -0.24 | 0.74      | 0.11  | 0.77    |
|               | Pair 10 | ENO5 - ENO5L | -0.18 | 0.87      | 0.12  | 0.56    |
|               | Pair 11 | ENO6 - ENO6L | -0.16 | 0.77      | 0.11  | 0.08    |
| Economic      | Pair 12 | ECO1 - ECO1L | 0.08  | 0.90      | 0.13  | 0.53    |
| orientation   | Pair 13 | ECO2 - ECO2L | -0.16 | 0.84      | 0.12  | 0.29    |
| orientation   | Pair 14 | ECO3 - ECO3L | -0.06 | 0.82      | 0.12  | 0.41    |
|               | Pair 15 | SCA1 - SCA1L | -0.5  | 0.81      | 0.12  | 0.51    |
| Sustainable   | Pair 16 | SCA2 - SCA2L | -0.46 | 0.79      | 0.11  | 0.20    |
|               | Pair 17 | SCA3 - SCA3L | -0.56 | 0.88      | 0.13  | 0.34    |
| Competitive   | Pair 18 | SCA4 - SCA4L | -0.5  | 0.93      | 0.13  | 0.34    |
| Advantage     | Pair 19 | SCA5 - SCA5L | -0.32 | 0.87      | 0.12  | 0.66    |
|               | Pair 20 | SCA6 - SCA6L | -0.26 | 0.85      | 0.12  | 0.78    |
| Market        | Pair 21 | MTO1 - MTO1L | -0.38 | 0.78      | 0.11  | 0.30    |
|               | Pair 22 | MTO2 - MTO2L | -0.4  | 0.81      | 0.11  | 0.22    |
| orientation   | Pair 23 | MTO3 - MTO3L | -0.42 | 0.91      | 0.13  | 0.42    |

|                               | Pair 24 | MTO4 - MTO4L | -0.18 | 0.94 | 0.13 | 0.07 |
|-------------------------------|---------|--------------|-------|------|------|------|
|                               | Pair 25 | MTO5 - MTO5L | -0.4  | 0.78 | 0.11 | 0.33 |
|                               | Pair 26 | MTO6 - MTO6L | -0.28 | 0.86 | 0.12 | 0.16 |
|                               | Pair 27 | SPF1 - SPF1L | -0.82 | 0.66 | 0.09 | 0.06 |
|                               | Pair 28 | SPF2 - SPF2L | -0.82 | 0.75 | 0.11 | 0.08 |
| Sustainability<br>Performance | Pair 29 | SPF3 - SPF3L | -0.88 | 0.75 | 0.11 | 0.06 |
|                               | Pair 30 | SPF4 - SPF4L | -0.8  | 0.76 | 0.11 | 0.07 |
|                               | Pair 31 | SPF5 - SPF5L | -0.82 | 0.77 | 0.11 | 0.20 |
|                               |         |              |       |      |      |      |

### **Social Desirability Bias**

Social desirability bias refers to the inclination of individuals to portray themselves in a favourable or socially acceptable manner rather than providing honest or accurate responses. In research studies or surveys, this form of response bias can manifest when participants alter their answers to conform to societal norms or to avoid criticism.

People may succumb to social desirability bias for various reasons, including a desire to be well-liked, a need to evade criticism or punishment, or a wish to adhere to social conventions. Due to the erroneous or skewed responses it engenders, this bias has the potential to compromise the validity and reliability of research findings.

To address this bias, a statement was included in the questionnaire indicating that the data collected would be used for academic purposes, with an assurance of data confidentiality.

#### **Measurement Model**

Measurement models frequently provide internal consistency estimates and evidence of convergent and discriminant validity. In other words, they employ more stringent checks for construct reliability and validity (Bagozzi, 1980; Fornell and Larcker, 1981; Garbing and Anderson, 1988).

The proposed hypotheses were assessed within the measurement model through confirmatory factor analysis (CFA) in AMOS. The validity and reliability of the measurement model (Figure 1) should be sound in order to evaluate critical interrelationships within the structural model (Fornell and Larcker, 1981; Ifinedo, 2006).

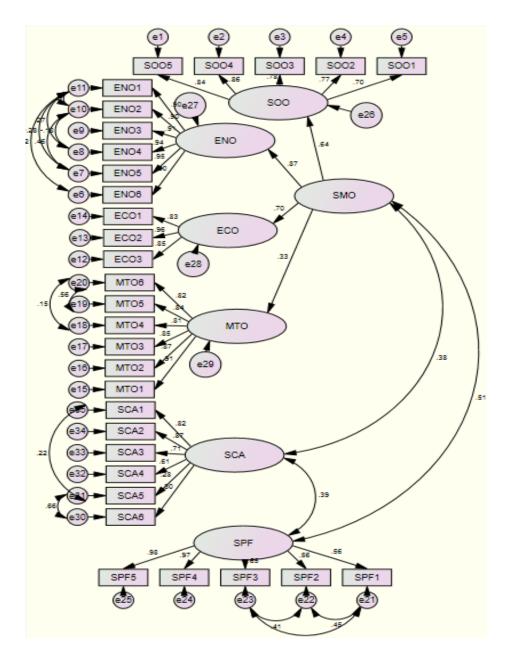



Figure 1: *Measurement model* 

Source: Authors compilation