DATA ANALYSIS AND INTERPRETATION

26	0.560	0.757	87.193
27	0.486	0.657	87.850
28	0.460	0.621	88.471
29	0.433	0.585	89.056
30	0.404	0.546	89.602
31	0.385	0.521	90.123
32	0.371	0.501	90.624
33	0.359	0.485	91.109
34	0.347	0.469	91.578
35	0.339	0.458	92.036
36	0.335	0.452	92.488
37	0.320	0.432	92.920
38	0.308	0.416	93.336
39	0.274	0.370	93.707
40	0.257	0.347	94.053
41	0.251	0.339	94.392
42	0.238	0.321	94.713
43	0.236	0.319	95.032
44	0.222	0.301	95.332
45	0.215	0.290	95.623
46	0.206	0.279	95.901
47	0.199	0.269	96.170
48	0.191	0.258	96.428
49	0.184	0.248	96.677

50	0.180	0.243	96.919
51	0.175	0.236	97.156
52	0.169	0.228	97.384
53	0.162	0.219	97.603
54	0.155	0.210	97.813
55	0.145	0.195	98.008
56	0.137	0.185	98.193
57	0.132	0.179	98.371
58	0.121	0.164	98.535
59	0.117	0.158	98.693
60	0.109	0.147	98.841
61	0.105	0.142	98.982
62	0.094	0.127	99.109
63	0.090	0.121	99.231
64	0.084	0.113	99.344
65	0.076	0.102	99.446
66	0.073	0.099	99.545
67	0.064	0.087	99.632
68	0.061	0.083	99.715
69	0.048	0.065	99.780
70	0.042	0.057	99.837
71	0.038	0.051	99.889
72	0.035	0.047	99.936
73	0.028	0.038	99.974
74	0.019	0.026	100.000

Extraction Method: Principal Component Analysis.

Non-Response bias- It is checked through independent sample t-test. Results of t-test show that there is no significant difference in the mean value of two groups i.e. Early respondents (ER) and late respondents (LR) for different factors. This shows that there is no issue of non-response bias in the study (table 5).

Constructs	Non-Response	Paired Differen	p-value	
		Mean	Std. Deviation	
	MC1 - MC1L	-0.080	0.829	0.498
Massaga	MC2 - MC2L	-0.340	0.961	0.056
Greedikiliter	MC3 - MC3L	-0.060	0.913	0.644
Credibility	MC4 - MC4L	-0.120	0.918	0.360
	MC5 - MC5L	-0.120	0.818	0.251
	LE1 - LE1L	-0.040	0.832	0.735
T 1 1.	LE2 - LE2L	-0.300	0.931	0.067
Leadership	LE3 - LE3L	-0.060	0.913	0.644
Emphasis	LE4 - LE4L	-0.120	0.824	0.308
	LE5 - LE5L	-0.040	0.947	0.766
	EE1 - EE1L	0.000	0.857	0.563
	EE2 - EE2L	-0.240	0.960	0.083
Employee	EE3 - EE3L	-0.080	0.900	0.533
Empowerment	EE4 - EE4L	-0.140	0.926	0.290
	EE5 - EE5L	-0.120	1.023	0.411

Table 5. Non-Response Bias

	PI1 - PI1L	-0.080	0.853	0.510
	PI2 - PI2L	-0.360	0.942	0.201
Peer Involvement	PI3 - PI3L	-0.120	0.872	0.335
	PI4 - PI4L	-0.120	0.872	0.335
	PI5 - PI5L	-0.060	0.956	0.659
	GI1 - GI1L	-0.679	0.683	0.784
	GI2 - GI2L	-0.819	0.604	0.300
Green	GI3 - GI3L	-0.619	0.696	0.219
Involvement	GI4 - GI4L	-0.819	0.660	0.421
	GI5 - GI5L	-0.859	0.693	0.074
	GI6 - GI6L	-0.579	0.533	0.330
Croop	GPM1 - GPM1L	-0.160	0.792	0.159
Derformance	GPM2 - GPM2L	-0.260	0.828	0.061
Management	GPM3 - GPM3L	-0.480	0.814	0.080
Management	GPM4 - GPM4L	-0.240	0.847	0.051
Green	GRS1 - GRS1L	-0.300	0.678	0.070
Recruitment &	GRS2 - GRS2L	-0.240	0.744	0.203
Selection	GRS3 - GRS3L	-0.360	0.776	0.102
	GT1 - GT1L	-0.120	0.849	0.322
Green Training	GT2 - GT2L	-0.240	0.847	0.056
	GT3 - GT3L	-0.320	0.844	0.110
Graan Day &	GPR1 - GPR1L	-0.180	0.748	0.095
Dowords	GPR2 - GPR2L	-0.160	0.817	0.172
newalus	GPR3 - GPR3L	-0.360	0.851	0.204
Individual Green	IGV1 - IGV1L	-0.240	0.797	0.383

Values	IGV2 - IGV2L	-0.220	0.708	0.328
	IGV3 - IGV3L	-0.280	0.730	0.109
	IGV4 - IGV4L	-0.180	0.720	0.083
	IGV5 - IGV5L	-0.320	0.741	0.104
	IGV6 - IGV6L	-0.290	0.791	0.124
	IGV7 - IGV7L	-0.340	0.798	0.060
	EK1 - EK1L	-0.700	0.789	0.844
	EK2 - EK2L	-0.840	0.710	0.360
	EK3 - EK3L	-0.640	0.802	0.279
	EK4 - EK4L	-0.840	0.766	0.481
Environmental	EK5 - EK5L	-0.880	0.799	0.134
Knowledge	EK6 - EK6L	-0.600	0.639	0.390
	EK7 - EK7L	-0.680	0.683	0.082
	EK8 - EK8L	-0.600	0.728	0.059
	EK9 - EK9L	-0.580	0.758	0.283
	EK10 - EK10L	-0.460	0.734	0.293
	EO1 - EO1L	-0.240	0.771	0.052
Environmental	EO2 - EO2L	-0.240	0.916	0.070
Orientation	EO3 - EO3L	-0.340	0.848	0.066
	EO4 - EO4L	-0.460	0.862	0.058
	GBW1 - GBW1L	-0.820	0.596	0.174
Green Rehaviour	GBW2 - GBW2L	-0.900	0.678	0.551
at Workplace	GBW3 - GBW3L	-0.940	0.682	0.194
at workplace	GBW4 - GBW4L	-0.900	0.580	0.061
	GBW5 - GBW5L	-0.860	0.572	0.059

Fmployee	EP1 - EP1L	-0.980	0.654	0.090
noncontion shout	EP2 - EP2L	-0.920	0.724	0.183
perception about	EP3 - EP3L	-0.980	0.769	0.683
environmental	EP4 - EP4L	-0.960	0.727	0.289
performance	EP5 - EP5L	-0.740	0.694	0.291
	GIN1 - GIN1L	-0.380	1.028	0.086
	GIN2 - GIN2L	-0.380	0.753	0.081
Green Intent	GIN3 - GIN3L	-0.300	0.814	0.093
	GIN4 - GIN4L	-0.280	0.834	0.065

Social Desirability bias- The tendency of people to show themselves in a positive or socially acceptable way rather than giving honest or correct answers is known as social desirability bias. In research studies or surveys, this kind of response bias can happen when participants change their responses to fit social norms or to avoid criticism.

For a variety of reasons, including the want to be liked, the need to avoid criticism or punishment, or the desire to fit in with social standards, people may engage in social desirability bias. Due to the erroneous or skewed replies it causes, this bias has the potential to undermine the validity and reliability of research findings.

To handle this bias a statement was included in the questionnaire that the data collected will be used for the purpose of academics and the confidentiality of data will be maintained.

Measurement model

Internal consistency estimates and proof of convergent and discriminant validity are widely reported by measurement models. To put it another way, it is more stringent construct reliability and validity checks (Bagozzi, 1980; Fornell and Larcker, 1981; Garbing and Anderson, 1988).

The proposed hypotheses were checked in the measurement model using confirmatory factor analysis (CFA) in AMOS. The measurement model's (figure 1) validity and reliability should be appropriate for evaluating important interrelationships in the structural model (Fornell and Larcker, 1981; Ifinedo, 2006).

Figure 1: Measurement model

Source: Authors compilation

Model Fit

The model fit can be assessed using a variety of fit indices, including the chi-square value to degree of freedom ratio (CMIN/DF), the Comparative Fit Index (CFI) (Bentler, 1990), Tucker Lewis Index (TLI) (Bollen, 1989), Goodness of Fit Index (GFI) (Jöreskog and Sörbom, 1989), Root Mean Square Error of Approximation (RMSEA) (Browne and Cudeck, 1993) Residual (SRMR). These indices indicate whether the proposed model better describes the observed and latent variables relationships. However, quoting all indices is unnecessary because it will strain both reviewers and readers, so it must be avoided (Hooper, Coughlan and Mullen, 2008).

The use of Chi-Square test, CFI, SRMR and RMSEA has been strongly advocated besides their respective cut off criteria (Hu and Bentler, 1999; Kline, 2005). These indices are established as the most indifferent to parameter estimates, model misspecification and sample size. The table 7 lists out the model fit measures for the measurement model under consideration as suggested by Hu and Bentler (1999).

Criteria for	
Goodness of Fit Measures	Recommended values
CMIN/DF	≥ 5
GFI	>0.90
AGFI	>0.80
RMR	Ranges between 0 lower it is better is <0.1 0r 0.08

Table 6. Recommended 1	Model Fit Values
------------------------	------------------

and 1,

Ranges between 0 lower it is better is <0.1 0r 0.08

RMSEA

and 1,

Source: Hair et al., (2006)

Table 7. Results of the Model Fit Indices

CMIN

Model	NPAR	CMIN	DF	Р	CMIN/DF
Default model	278	9488.13	2571	0	3.69
Saturated model	2849	0.00	0		
Independence model	148	30769.28	2701	0	11.392

RMR, GFI

Model	RMR	GFI	AGFI	PGFI
Default model	0.15	0.962	0.931	0.30
Saturated model	0	1		
Independence model	0.297	0.177	0.152	0.172

Baseline Comparisons

Model	NFI	RFI	IFI	TLI	CFI
	Delta1	rho1	Delta2	rho2	
Default model	0.962	0.951	0.969	0.911	0.971
Saturated model	1		1		1
Independence model	0	0	0	0	0

RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	0.027	0.005	0.069	0.756
Independence model	0.363	0.361	0.389	0.000

Table 7 represents the model fitness when all constructs put together where CMIN/DF is 3.69 (Marsh and Hocevar, 1985) and all the values of the model fit are within the specified range. It means that the model has achieved good model fit. Additionally, other fit indices as GFI= 0.992 and AGFI= .931 were also supportive (Marsh and Grayson, 1995; Schumacker and Lomax, 1996; Kline, 2005). Thus, the model fitted the data effectively. All co-variances among the factors and regression weights were significant (p < 0.001). Consequently, respecification of the model was not needed any further.

Construc	ts		Items	Estimate	S.E.	C.R.	Р
			HR1	0.600			
			HR2	0.523	0.15	6.515	***
Green HR factors	R factors		HR3	0.720	0.156	7.543	***
			HR4	0.853	0.184	7.895	***
			HR5	0.743	0.174	8.11	***
			OC1	0.948	0.131	11.085	***
Organization Culture			OC2	0.944	0.13	11.019	* * *
			OC3	0.738	0.105	9.687	* * *
			OC4	0.658			
Green	Recruitment	&	GRS1	0.681			

Table 8. Measurement Model

Selection		GRS2	0.775	0.087	12.88	***
		GRS3	0.866	0.095	13.283	***
		GT1	0.763			
Green Training	- -	GT2	0.792	0.073	14.368	***
		GT3	0.814	0.074	14.547	***
		GPM1	0.712			
Green	Performance	GPM2	0.854	0.079	15.135	***
Management		GPM3	0.825	0.078	14.778	***
		GPM4	0.624	0.08	11.411	***
		GPR1	0.711			
Green Pay & R	ewards	GPR2	0.768	0.079	13.408	***
		GPR3	0.823	0.083	14.057	***
		GI1	0.835			
		GI2	0.867	0.049	21.503	***
Graan Involvar	nont	GI3	0.922	0.046	23.746	***
	nem	GI4	0.816	0.047	21.453	***
		GI5	0.830	0.05	19.981	***
		GI6	0.826	0.05	19.869	***
		GBW1	0.549			
Groop Poh	aviour at	GBW2	0.547	0.081	12.111	***
Werkeless	avioui at	GBW3	0.642	0.096	12.524	***
workplace		GBW4	0.972	0.143	12.625	***
		GBW5	0.979	0.14	12.644	***
Employee	pontion shart	ENVP1	0.722			
Employee perc	eption about	ENVP2	0.801	0.073	14.908	* * *

environmental performance	ENVP3	0.788	0.078	14.678	***
	ENVP4	0.750	0.076	13.998	***
	ENVP5	0.684	0.074	12.772	***
	ENVO1	0.849			
Environmental Orientation	ENVO2	0.835	0.051	19.863	***
Environmental Orientation	ENVO3	0.867	0.049	20.965	***
	ENVO4	0.790	0.052	18.293	***
	GIN1	0.750			
Groop Intent	GIN2	0.807	0.064	15.735	***
Green Intent	GIN3	0.869	0.064	16.821	***
	GIN4	0.747	0.065	14.507	***
	EK1	0.439			
	EK2	0.552	0.169	7.614	***
	EK3	0.512	0.159	7.318	***
	EK4	0.719	0.156	10.509	***
Environmental Knowledge	EK5	0.594	0.139	9.624	***
Environmental Knowledge	EK6	0.928	0.202	9.284	***
	EK7	0.901	0.205	9.208	***
	EK8	0.943	0.207	9.325	***
	EK9	0.878	0.207	9.146	***
	EK10	0.900	0.201	9.21	***
	LE1	0.813			
Laadarahin Emphasia	LE2	0.837	0.054	19.229	***
Leadership Emphasis	LE3	0.806	0.052	18.237	***
	LE4	0.822	0.054	18.755	***

	LE5	0.740	0.056	16.219	***
	MC1	0.807			
	MC2	0.831	0.056	18.312	***
Message Credibility	MC3	0.774	0.056	16.58	***
	MC4	0.803	0.056	17.614	***
	MC5	0.684	0.059	14.266	***
	PI1	0.797			
	PI2	0.796	0.06	16.468	***
Peer Involvement	PI3	0.749	0.062	15.338	***
	PI4	0.745	0.062	15.239	***
	PI5	0.581	0.064	11.431	***
	EE1	0.782			
	EE2	0.765	0.063	15.729	***
Employee Empowerment	EE3	0.708	0.062	14.309	***
	EE4	0.853	0.06	17.967	***
	EE5	0.829	0.061	17.38	***
	IGV1	0.864			
	IGV2	0.912	0.041	26.185	***
	IGV3	0.952	0.037	29.726	***
Individual Green Values	IGV4	0.956	0.038	29.104	***
	IGV5	0.831	0.044	21.732	***
	IGV6	0.888	0.041	24.752	***
	IGV7	0.657	0.052	15.056	***

Sources: Author's Calculations

Table 9. Measures' discriminant validity

	CR	AVE	HR	ENVP	ENVO	GIN	OC	GBW	EK	IGV
HR	0.822	0.586	0.697							
ENVP	0.865	0.563	0.377	0.750						
ENVO	0.902	0.698	0.356	0.331	0.836					
GIN	0.872	0.632	0.433	0.546	0.344	0.795				
OC	0.898	0.692	0.430	0.360	0.289	0.410	0.832			
GBW	0.867	0.583	0.464	0.505	0.348	0.451	0.438	0.764		
EK	0.928	0.577	0.298	0.310	0.118	0.217	0.200	0.286	0.760	
IGV	0.956	0.758	0.354	0.724	0.265	0.460	0.337	0.604	0.217	0.871

Sources: Author's Calculations. EK: Environmental Knowledge, HR: Green HR factors, GBW: Green Behaviour at Workplace, ENVP: Employee perception about environmental performance, ENVO: Environmental Orientation, GIN: Green Intent, OC: Organization Culture, IGV: Individual Green Values.

Structural equation modelling (SEM)

SEM is a multivariate statistical analysis method that combines factor analysis and multiple regression analysis to look at the structural link between measured and latent constructs. The proposed causal relationships are put to the test. There are two types of SEM models: measurement and structural. The principle that determines how measured variables come together to represent the theory is represented by the measurement model. The structural model, on the other hand, describes the theory that explains how constructs are connected to one another. It satisfies the causal relationship between various constructs under the study.

Assumptions of Structural equation modeling

Following are the assumptions of Structural Equation Modeling (SEM):

Nominal, ordinal, interval and ratio scales of measurement can be used.

From a set of observed or measured variables, either a correlation or a variancecovariance data matrix can be used. But preferably, the covariance matrix is used.

The relationship between different constructs was investigated using structural equation modelling. The structural equation model shows potential causal relationships between endogenous and exogenous variables. Paulrajan (2011) suggests Structural equation modelling is carried out using statistical approaches. Figure 2 shows the structural model as a path analysis diagram utilizing weighted least square, SEM, and path analysis. The method of least squares is a common methodology in regression analysis for the approximate solution of over-determined structures, i.e., sets of equations with more equations and unknowns.

The model fitness when all constructs put together where CMIN/DF is 3.80 (Marsh and Hocevar, 1985) and all the values of the model fit are within the specified range. It means that the model has achieved good model fit. Additionally, other fit indices as GFI= 0.979, AGFI= 0.941, RMR=0.019, CFI= 0.973, RMSEA= 0.020 were also supportive (Marsh and Grayson, 1995; Schumacker and Lomax, 1996; Kline, 2005). Thus, the model fitted the data effectively. All co-variances among the factors and regression weights were significant (p < 0.001). Consequently, re-specification of the model was not needed any further.

Results of the Structural Model

Figure 2:

Structural equation modeling

Source: Authors compilation

Table	10.	Structural	Analysis
-------	-----	------------	----------

Objective	Relation	nship		Estim	S.E.	C.R.	Р	Decision	
2	1			ate					
Objective 1	IGV	==>		0.481	0.035	7.711	* * *	Supported	
Objective- 1	EK	==>	UDW	0.115	0.051	2.473	0.013	Supported	

	IGV	==>	FNVP	0.640	0.043	10.874	***	Supported
	EK	==>		0.143	0.066	3.064	0.002	Supported
	OC	==>	GBW	0.188	0.047	3.756	***	Supported
Objective- 2	GIN	==>		0.100	0.029	2.155	0.031	Supported
	OC	==>	ENVP	0.047	0.055	1.048	0.295	Not Supported
	GIN	==>		0.242	0.04	4.978	***	Supported
	ENVO	==>	GBW	0.130	0.027	2.785	0.005	Supported
Objective- 3	HR	==>		0.173	0.062	3.269	0.001	Supported
-	ENVO	==>	ENVP	0.100	0.034	2.208	0.027	Supported
	HR	==>		0.020	0.072	0.426	0.67	Not Supported

Source: Author's Calculations